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1 Counting Type Classes and Introduction to Shannon En-
tropy

1.1 Counting type classes

Here is a basic setting we will be working with:
e A is a finite alphabet.

e P(A) ={p:A—=R:pla) >0,Y,p(a) =1} C RA is the set of probability mass
functions on A.

o [[p—qll=>_,Ip(a) —q(a)| = 2supgc 4 [p(B) — q(B)| is the total variation between p
and q.

o If z € A" (for n € N), then N(a | ) = [{i = 1,...,n : x; = a}| is the number of
occurrences of a in .

N(alz)

Definition 1.1. The empirical distribution of z is p,(a) = —

Definition 1.2. Given p € P(A), the type class of p is T,,(p) = {z € A" : p, = p}.

How big is |T,,(p)|? Here is a basic answer:

n!
T (p)| = { Copla)-(ipan))! np(a) €N Va € A . A={a,...,a}.
0 otherwise

We are interested in the exponential asymptotic behavior of |T;,(p)|. Stirling’s approxima-
tion tells us that

as n — oo (where e?) — 1 as n — 00). We will write this more crudely as
n
nl = eolm),
en
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Inserting this into the previous expression gives

(nn/en)eo(n)
T, =
0 = T Gyt fermtan ot

_ n" e
~ IL(mp(ai))mw(@) / T, envled)

en logn

exp(_; np(a;) log np(a;))

= exp (n logn — Z np(a;) log(np(ai))>

= exp (n logn — Z np(a;)logn — an(ai) logp(ai)> .

In total, we have
’Tn(p)] — ¢~ plai) logp(ai)+o(n)

_ nH(p)+o(n)

where H(p) = —)_,p(a)logp(a). This quantity is called the Shannon entropy of p €
P(A).

Later on, high-level real analysis will allow us to make sense of redoing the above
computation in more complicated variants of this problem, where we are not just looking
at the empirical distribution.

Remark 1.1. We regard H as a function P(A) — R, with the convention that 0log0 = 0.

1.2 Basic properties of Shannon entropy
Proposition 1.1. The Shannon entropy H has the following properties:

(a) H is continuous.
Proof. xlogz is continuous for z € (0,1], and xlogx — 0 as  — 0. O

(b) H is strictly concave; i.e. H(tp+ (1 —1t)q) > tH(p) + (1 — t)H(q) with equality only
if either p =q ort € {0, 1}.

Proof. The function x — z log z is strictly concave on [0, 1] (second derivative is < 0).
For strictness, if p # ¢ and 0 < ¢ < 1, then there is some a such that p(a) # q(a).
Then

—(tp(a) + (1 —t)g(a)) log(tp(a) + (1 —t)q(a)) > —tp(a)logp(a) — (1 —t)g(a)logq(a).
O



(c) H(p) is symmetric under permutations of A.

(d) 0 < H(p) <log|A|. Equality on the left is achieved iff p = d, for some a € A, and
equality of the right is achieved iff p = (1/|A],...,1/]A|).

Proof. —xlogz > 0 and is > 0 unless z = 0,1. So H(p) > 0, and equals 0 only
if p(a) € {0,1} for all a, i.e. only if p = ¢, for some b. On the other hand, by
concavity and symmetry (properties (b) and (c)), H must be maximized at p =
(1/]4],...,1/]A|), and then H = log |A]. O

Example 1.1. Look at the image of H of the simplex P({1,2,3}) = {(p1,p2,p3) : pi >

O, Zl Di = 1}.

Remark 1.2. Suppose X is a random variable taking values in A, and let p(a) = P(X = a)
for a € A. Then H(X) := H(p) is a canonical way to quantify the “uncertainty” in X.

Next time, we will loosen the counting problem to estimate the size of

Tos(p) = {z € A" : [lpz — p[| < 4}
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